Mechanism of Reduction of Primary Alkyl Radicals by Sml₂—HMPA

Masangu Shabangi, Matthew L. Kuhlman, and Robert A. Flowers, II*

Department of Chemistry, The University of Toledo, Toledo, Ohio 43606 rflower@uoft02.utoledo.edu

Received October 25, 1999

ORGANIC LETTERS 1999 Vol. 1, No. 13 2133–2135

ABSTRACT

 $R \bullet \xrightarrow{Sml_2 \text{-HMPA}} R \text{-Sml}_2$ $R = \text{primary alkyl} \qquad k_{obs} / k_{ET} = 2$

The measured value of $E^{\circ}(Sml_2^+-HMPA - Sml_2-HMPA)$ was used in combination with literature values for the E° of primary radicals to estimate the bimolecular rate constant for an outer-sphere electron transfer (ET). Comparison with the experimentally measured rate constant is consistent with an outer-sphere ET.

Samarium diiodide (SmI₂) is one of the most important reducing reagents utilized by organic chemists. It is useful in functional group reductions, the coupling of halides with π bonds, and the coupling of two π bonds.¹ The most important feature of SmI₂ is its ability to promote one-pot, sequential reactions including both one- and two-electron processes.² The success of many SmI₂-mediated reactions is often dependent on the addition of a ligating cosolvent such as HMPA,³ which accelerates reactions of SmI₂.⁴ In addition to accelerating reductions by SmI₂, HMPA also enhances the stereochemical outcome and diastereoselectivity of many reactions.^{3,5} Although the combination of SmI₂– HMPA in THF produces an extremely versatile reductant, there is a paucity of detail on its interaction with organic substrates.

Recent results in our laboratory suggest that $SmI_2(HMPA)_4$ is the species responsible for the unique reactivity of the SmI_2 -HMPA combination in THF.⁶ Careful examination of the recently published X-ray crystal structure of the SmI_2 -(HMPA)₄ reductant shows that the complex is sterically crowded.⁷ There are two potential ways that a reducible functional group (alkyl halide, carbonyl, or radical) can be reduced by the sterically crowded reductant (Scheme 1). The first would involve displacement of an $SmI_2(HMPA)_4$ ligand by substrate which could lead to an inner-sphere electron transfer (ET). The second potential mechanistic pathway would have the ligands remain intact and the ET take place through an outer-sphere process. Since radicals are formed during numerous reductive coupling processes mediated by SmI_2 , we carried out the experiments described below to determine the mode of electron transfer from $SmI_2(HMPA)_4$ to primary radicals.

One of the most important values that needs to be defined in order to determine the mode of electron transfer is the standard potential of the $SmI_2(HMPA)_4 - SmI_2^+ - (HMPA)_4$ redox couple in THF. We recently utilized linear sweep voltammetry (LSV) to examine the influence of HMPA concentration on the reducing power of SmI_2 .⁸ While these experiments showed unequivocally that HMPA increases the reducing power of SmI_2 , the reported values were not standard potentials. Figure 1 contains the cyclic voltammogram of SmI_2 and $SmI_2(HMPA)_4$ in THF. The CV of SmI_2 containing HMPA did not change with the addition of more than 4 equiv of HMPA. Both voltammograms contained in Figure 1 are quasireversible, so we employed the model recently described by Skrydstrup for the $SmI_2^+-SmI_2$ redox

⁽¹⁾ Curran, D. P.; Fevig, T. L.; Jasperse, C. P.; Totleben, M. J. Synlett 1992, 943-961.

⁽²⁾ Molander, G. A.; Harris, C. R. *Chem. Rev.* **1996**, *96*, 307–338. (3) Molander, G. A. *Chem Rev.* **1992**, *92*, 29–68.

^{(4) (}a) Inanaga, J.; Ishikawa, M.; Yamaguchi, M. Chem. Lett. **1987**, 1485–1486. (b) Hasegawa, E.; Curran, D. P. Tetrahedron Lett. **1993**, 34,

<sup>1717–1720.
(5)</sup> Molander, G. A.; McKie, J. A. J. Org. Chem. 1992, 57, 3132–3139.
(6) Shotwell, J. B.; Sealy, J. M.; Flowers, R. A., II. J. Org. Chem. 1999, 64, 5251–5255.

^{(7) (}a) Hou, Z.; Wakatsuki, Y. J. Chem. Soc., Chem. Commun. **1994**, 1205–1206. (b) Hou, Z.; Zhang, Y.; Wakatsuki, Y. Bull. Chem. Soc. Jpn. **1997**, 70, 149–153.

⁽⁸⁾ Shabangi, M.; Flowers, R. A., II. Tetrahedron Lett. **1997**, 38, 1137–1140.

couple to determine the standard potentials.⁹ Digital simulations of both voltammograms revealed that the standard potential (vs SCE in THF) for SmI₂ is -0.98 ± 0.04 V vs SCE,¹⁰ while the standard potential for SmI₂(HMPA)₄ is

Figure 1. (a) Cyclic voltammogram of 2.5 mM SmI₂ recorded in THF-0.5 M LiI electrolyte at a glassy carbon electrode (diameter = 1 mm) at a sweep rate of 100 mV s⁻¹. The gray curve represents the simulated voltammogram based on the model utilized in ref 9. (b) Cyclic voltammogram of 2.5 mM SmI₂(HMPA)₄ recorded under the same conditions. The gray curve represents the simulated voltammogram.

 -1.75 ± 0.06 V vs SCE. These findings indicate that the change in the reducing power of reductant is 0.8 V (18 kcal/mol), a finding in close agreement with our earlier LSV experiments.

The standard redox potential of the $\mathbb{R}^{+}/\mathbb{R}^{-}$ couple for a primary butyl radical was estimated by Saveant and coworkers to be in the range -1.30 to -1.42 V vs SCE.¹¹ With these limiting values, it is possible to estimate the bimolecular rate constant for outer-sphere ET from SmI₂(HMPA)₄ to a primary radical using the Marcus equation (1): ¹²

$$k_{\rm ET} = k_{\rm d} / [1 + 0.2 \exp\{(\lambda/4)(1 + \Delta G_{\rm ET}^{\circ}/\lambda)^2 / RT\}]$$
(1)

where k_d is the diffusion-controlled rate constant in THF, $\Delta G_{\text{ET}}^{\circ}$ is the free energy of electron transfer, and λ is the reorganization energy.^{12,13} Utilizing this approach we were able to estimate the bimolecular rate constant for electron transfer from SmI₂(HMPA)₄ to a primary radical (Table 1).

Table 1. Total Reorganization Energy (λ) , Free Energy of Electron Transfer $(\Delta G_{\text{ET}}^{\circ})$, Marcus Rate (k_{ET}) , and Measured Rate (k_{obs}) for the Reduction of a Primary Alkyl Radical by SmI₂(HMPA)₄

λ (kcal/mol) ^a	$\Delta G^{\circ}_{\mathrm{ET}}$ (kcal/mol) ^b	$k_{ m ET}$ (× 10 ⁶ M ⁻¹ s ⁻¹)	$k_{\rm obs} (imes 10^6 { m M}^{-1} { m s}^{-1})$
40	-9 ± 1	3 ± 1	6 ± 1
			7 ^c

^{*a*} The total reorganization energy (λ) is the average of the self-exchange reorganization energies for the electron donors and acceptors. ^{*b*} $\Delta G_{\rm ET}^{\circ} = 23.06$ ($E_{\rm ox}^{\circ} - E_{\rm red}^{\circ}$), where $E_{\rm ox}^{\circ}$ is the standard potential of the SmI₂(HMPA)₄ – SmI₂⁺–(HMPA)₄ redox couple and $E_{\rm red}^{\circ}$ is the standard potential of the R[•] – R⁻ couple for a primary radical. ^{*c*} See ref 14.

Curran and Hasegawa utilized the 6-iodo-1-hexene radical clock to estimate the bimolecular rate constant for the

⁽⁹⁾ Enemaerke, R. J.; Daasbjerg, K.; Skrydstrup, T. Chem. Commun. 1999, 343-344.

⁽¹⁰⁾ The redox potential of SmI_2 is -1.45 ± 0.04 vs Fc⁺-Fc. This value is within the experimental error of the same value reported in ref 9.

⁽¹¹⁾ Andrieux, C. P.; Gallardo, I.; Saveant, J.-M. J. Am. Chem. Soc. **1989**, 111, 1620–1626.

⁽¹²⁾ Marcus, R. A. Annu Rev. Phys. Chem. 1964, 15, 155.

reduction of a primary radical by SmI_2 containing varying amounts of HMPA.¹⁴ They found that a solution of SmI_2 containing between 4 and 5 equiv of HMPA produced a reductant capable of reducing a primary radical. We repeated their experiment and found the same rate constant (within experimental error) for the reduction of a primary radical by $SmI_2(HMPA)_4$. The bimolecular rate constants determined experimentally with the radical clock and utilizing Marcus theory are contained in Table 1. Surprisingly, these values only differ by a factor of 2, suggesting that the $SmI_2(HMPA)$ reductant reduces primary radicals through predominantly an outer-sphere process.

The recent work of Skrydstrup indicates that ET from THF-solvated SmI₂ to acetophenone is clearly an innersphere process while ET to benzyl bromide is closer to an outer-sphere process.⁹ These results suggest that SmI₂ has a higher affinity for THF than a benzyl halide, while carbonyls are capable of displacing THF ligands bound to SmI₂. The electrochemical results reported here show that a primary radical does not displace ligands from the SmI₂(HMPA)₄ complex. The consequence of this finding is that there is very little interaction between Sm reductant and the primary radical in the transition state leading to carbanion formation.¹⁵

An apparent quandary arises because Curran¹⁶ and Molander¹⁷ have shown that organosamarium species are the reactive intermediates responsible for carbon–carbon bond formation in the SmI₂–HMPA-mediated Barbier reaction. The term organosamarium implies that a bond is formed between samarium and carbon, and Curran postulated that radicals and SmI₂ combine directly (though an inner-sphere ET) to form alkylsamarium(III) reagents.¹ Our experiments support a mechanism where the primary radical is reduced to an anion through an outer-sphere ET. The existence of organosamarium intermediates proposed by Molander and Curran does not exclude the possibility of outer-sphere electron transfer in reductive couplings mediated by SmI_2 – HMPA. It is possible that the reduction of a primary radical by a hindered SmI_2 –HMPA complex produces a carbanion that can displace a ligand *after the electron transfer*, thereby producing a stable organosamarium species (Scheme 1). Littler provides a detailed account of a number of cases where ligand displacement on oxidants and reductants to produce organometallic species occurs by an outer-sphere process.¹⁸

We have recently shown that different ligating cosolvents can be utilized to "fine tune" the reducing power of SmI₂.¹⁹ If different ligating cosolvents produce Sm-based reductants that carry out ET via an outer-sphere process, chemists will be able to estimate the rates of reduction of various functional groups and radicals using their standard redox potentials. A complete analysis of the influence of various ligating cosolvents and additives on the energetics, rates, and mechanism of ET between SmI₂ and various functional groups and radicals will be presented in a forthcoming paper.

Acknowledgment. R.A.F. is grateful to the donors of the Petroleum Research Fund, administered by the American Chemical Society (29492-G1), and the University of Toledo for support of this research. We thank Drs. Rebecca Miller and Gary Miracle for their useful comments on the manuscript.

Supporting Information Available: Full experimental detail including electrochemical procedures and digital simulation data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL990329T

⁽¹³⁾ We used -1.36 ± 0.06 V as the standard potential for a primary radical. The total reorganization energy (λ) is the average of the self-exchange reorganization energies for the electron donors and acceptors and was estimated to be approximately 40 kcal/mol. The diffusion-controlled rate constant (k_d) in THF was determined using $k_d = 8RT/3000\eta$ and found to be 1.4 $\times 10^{10}$ M⁻¹ s⁻¹.

⁽¹⁴⁾ Hasegawa, E.; Curran, D. P. Tetrahedron Lett. 1993, 34, 1717–1720.

⁽¹⁵⁾ Eberson, L. Electron-Transfer Reactions in Organic Chemistry; Springer-Verlag: New York, 1987; p 18.

⁽¹⁶⁾ Molander, G. A.; McKie, J. A. J. Org. Chem. **1991**, 56, 4112–4120.

⁽¹⁷⁾ Curran, D. P.; Totleben, M. J. J. Am. Chem. Soc. 1992, 114, 6050–6058.

⁽¹⁸⁾ Littler, J. S. In *Essays on Free Radical Chemistry*; Alden Press: Oxford, 1970; pp 383-408.

⁽¹⁹⁾ Shabangi, M.; Sealy, J. M.; Fuchs, J. R.; Flowers, R. A., II. Tetrahedron Lett. **1998**, 39, 4429-4432.